منابع مشابه
On $Phi$-$tau$-quasinormal subgroups of finite groups
Let $tau$ be a subgroup functor and $H$ a $p$-subgroup of a finite group $G$. Let $bar{G}=G/H_{G}$ and $bar{H}=H/H_{G}$. We say that $H$ is $Phi$-$tau$-quasinormal in $G$ if for some $S$-quasinormal subgroup $bar{T}$ of $bar{G}$ and some $tau$-subgroup $bar{S}$ of $bar{G}$ contained in $bar{H}$, $bar{H}bar{T}$ is $S$-quasinormal in $bar{G}$ and $bar{H}capbar{T}leq bar{S}Phi(bar{H})$. I...
متن کاملOn weakly $mathfrak{F}_{s}$-quasinormal subgroups of finite groups
Let $mathfrak{F}$ be a formation and $G$ a finite group. A subgroup $H$ of $G$ is said to be weakly $mathfrak{F}_{s}$-quasinormal in $G$ if $G$ has an $S$-quasinormal subgroup $T$ such that $HT$ is $S$-quasinormal in $G$ and $(Hcap T)H_{G}/H_{G}leq Z_{mathfrak{F}}(G/H_{G})$, where $Z_{mathfrak{F}}(G/H_{G})$ denotes the $mathfrak{F}$-hypercenter of $G/H_{G}$. In this paper, we study the structur...
متن کاملDistinct Fuzzy Subgroups of a Dihedral Group of Order $2pqrs$ for Distinct Primes $p, , q, , r$ and $s$
In this paper we classify fuzzy subgroups of the dihedral group $D_{pqrs}$ for distinct primes $p$, $q$, $r$ and $s$. This follows similar work we have done on distinct fuzzy subgroups of some dihedral groups.We present formulae for the number of (i) distinct maximal chains of subgroups, (ii) distinct fuzzy subgroups and (iii) non-isomorphic classes of fuzzy subgroups under our chosen equival...
متن کاملTHE GROUPS OF ORDER pm WHICH CONTAIN EXACTLY p CYCLIC SUBGROUPS OF ORDER
If a group ( G ) of order pm contains only one subgroup of order pa, a > 0, it is known to be cyclic unless both p = 2 and at = l.f In this special case there are two possible groups whenever m > 2. The number of cyclic subgroups of order pa in G is divisible by p whenever G is non-cyclic and p > 2. J In the present paper we shall consider the possible types of G when it is assumed that there a...
متن کاملCyclic Subgroups of Order 4 in Finite 2 - Groups
We determine completely the structure of finite 2-groups which possess exactly six cyclic subgroups of order 4. This is an exceptional case because in a finite 2-group is the number of cyclic subgroups of a given order 2n (n ≥ 2 fixed) divisible by 4 in most cases and this solves a part of a problem stated by Berkovich. In addition, we show that if in a finite 2-group G all cyclic subgroups of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ricerche di Matematica
سال: 2008
ISSN: 0035-5038,1827-3491
DOI: 10.1007/s11587-008-0029-6